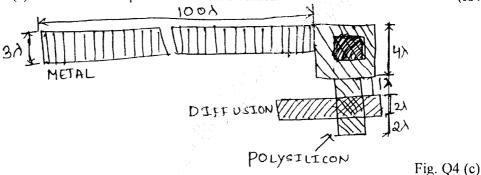

(06 Marks)

Seventh Semester B.E. Degree Examination, June/July 2018 VLSI Circuits and Design


Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Explain in detail, the process of n-MOS fabrication with the help of necessary fabrication structures. (10 Marks)
 - b. Discuss Moore's law. Explain the working of enhancement mode of transistor with different values of V_{ds} . (10 Marks)
- 2 a. Derive an expression for I_{ds} for both saturated as well as non saturated region. (10 Marks)
 - b. Define Zpu/Zpd. Show that pull up to pull down ratio for nMOS inverter driven through one or more pass transistor is 8:1. (10 Marks)
- 3 a Draw the monochrome stick diagram of n-MOS shift register cell.
 - b. Define stick diagram. Explain the encoding used for simple n-MOS process. (06 Marks)
 - c. What are the advantages of complementary transistor pull-up for an inverter? With relevant diagram, explain the CMOS inverter operation in different region. (08 Marks)
- 4 a. Define sheet resistance, square capacitance and delay unit, explain it same for different technologies. (06 Marks)
 - b. Estimate CMOS inverter delay interms of rise time and fall time. (06 Marks)
 - Calculate the total capacitance in picofarads between the substrate and structure as shown in Fig. Q4 (c) for Lambda = 5 μm. Use standard values.

PART - B

- 5 a. Derive the scaling factors for the following device parameter by considering constant electric field scaling model:
 - (i) Gate capacitance
 - (ii) Maximum operating frequency
 - (iii) Current density.
 - (iv) Channel resistance.
 - (v) Power dissipation per gate P_g. (10 Marks)
 - o. Discuss in detail the limitation of scaling and limits due to subthreshold currents. (10 Marks)

			10EE764
6	a.	Write the structure and stick diagram of nMOS, CMOS 2 I/P nand gates.	(06 Marks)
	b.	Prove that for pseudo nMOS logic $Zpu/Zpd = \frac{3}{1}$.	(06 Marks)
	c.	Write note on: (i) General logic function block. (ii) Multiplexer.	(08 Marks)
7	a.	Explain the design of 4-bit shifter.	(10 Marks)
	b.	Define regularity. Explain the design of an ALU subsystem.	(10 Marks)
8		Write short notes on:	
	a.	Some general consideration in subsystem design processes.	
	b.	Dynamic shift register.	
	c.	Dynamic CMOS logic.	
	d.	Gray code to hinary code converter.	(20 Marks)

* * * * *